Subject programme

- 1. Subject name / subject module: Mechanics
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Ftield or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Soboczyńska Dominika, mgr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

	Teaching activities with the tutor																			
Mode		Form of classes														Total				
of study		SOW	ECTS		SOW	ECTS	Workshop	SOW	ECTS		SOW	ECTS		SOW	ECTS	 SOW	ECTS	 SOW	ECTS	ECTS
Full-time studies							15	35	2											2
Part-time studies									Z											2
Credit rigor							Graded a	ssignm	ent											

6. Student workload – ECTS credits balance:

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	-
Participation in laboratory classes	15
Preparation to laboratory classes	25
Independent study of the subject	10
Participation in an exam / graded assignment	-
Total student workload (TSW)	50
ECTS credits	2
* Student's workload related to trainings	50
Student's workload in classes requiring direct participation of academic teachers	15

- 7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:
 - Recommended admission requirements none.
 - Recommended duration of the subject is taken from the course plan.
- 8. Specific learning outcomes knowledge, skills and social competence:

	Specific learning outcomes for the subject		Teaching	Methods for testing of		
Outcome symbol	Outcome description	Form	method	(checking, assessing) learning outcomes		
	Knowledge					
K_W03	A student has knowledge of mathematics, physics, chemistry and other areas of science needed to formulate and solve problems related to mechanics	Workshop				
K_W07	A student has a basic knowledge of the modelling of bodies in mechanics and the statics of bar systems (force reduction, equilibrium states of forces, internal forces in truss bars)		Inquiry methods	Student learning activities.		
K_W11	A student has an ordered, theoretically founded knowledge in the field of statics of statically determinate structures					
	Skills					
K_U02	A student can use his knowledge and solve problems related to mechanics used in the construction of mechatronic machines and devices		Inquine	Student learning		
K_U16	A student can determine internal forces in statically determinate systems; is able to accept and interpret static diagrams of bar structures, is able to formulate and use static equilibrium equations	Workshop	Inquiry methods	Student learning activities.		
	Social competence					
К_К02	A student is aware of the responsibility for the consequences of the adopted engineering solutions	Workshop	Inquiry methods	Student learning activities.		

Subject programme

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	80% - 86%	db
51% - 70%	dst	87% - 93%	db+
71% - 79%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Correct solution for excercise no 1	bdb (91%-100%), db+ (81%-90%), db (71%-80%), dst+ (61%-70%), dst (51%- 60%), ndst (0%-50%)	33,33% * 5	1,65
Correct solution for excercise no 2	bdb (91%-100%), db+(81%-90%), db (71%-80%), dst+ (61%-70%), dst (51%- 60%), ndst (0%-50%)	33,33% * 5	1,65
Correct solution for excercise no 3	bdb (91%-100%), db+ (81%-90%), db (71%-80%), dst+ (61%-70%), dst (51%- 60%), ndst (0%-50%)	33,34% * 5	1,70
Final result			5,0
Grade		5.0/5 = 100%	bdb (5,0)

10. The learning contents with the form of the class activities on which they are carried out:

(Workshop)

- 1. Newtons Laws of Motion; Projectiles and Charged Particles;
- 3. Momentum and Angular Momentum;

4.Energy;

- 5. Oscillations;
- 6.Calculus of Variations;
- 7.Lagranges Equations;
- 8.TwoBody CentralForce Problems;
- 9. Mechanics in Noninertial Frames;
- 10. Rotational Motion of Rigid Bodies;
- 11. Coupled Oscillators and Normal Modes;
- 12. Nonlinear Mechanics and Chaos;
- 13. Hamiltonian Mechanics;
- 14. Collision Theory;
- 15. Continuum Mechanics.
- **11.** Required teaching aids:

- a. Lecture multimedia projector
- b. Laboratory classes/Workshop specialist laboratory
- 12. Literature:
 - a. Basic literature:
 - Hartsuijker, C., Welleman, J. W., Engineering Mechanics, Springer, 2006
 - Gross, D., Hauger, W., Schröder, J., Wall W.A., Javier Bonet J., Engineering Mechanics 2, Springer, 2018
 - Silva, V., D., Mechanics and Strength of Materials, Springer, 2006
 - b. Supplementary literature:
 - Gross, D., Hauger, W., Schröder, J., Wall W.A., Javier Bonet J., Govindjee, S., Engineering Mechanics 3, Springer, 2014
 - Goodno, B.J., Gere, M., J., Mechanics of Materials, Cengage Learning, UK, 2018
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.).
- 14. Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	
3. Training	
4. Project classes	
5. Workshop classes	Soboczyńska Dominika, mgr inż
6. Simulation game	
7. Language classes	