Subject programme

- 1. Subject name / subject module: Programming
- 2. Lecture language: English
- 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Uniszkiewicz Cezary, mgr
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor																		
Mode										Form of	classes								Total
of study		sow	ECTS	Laboratory work	sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				43	57	4													1
Part-time studies						4													Ť
Credit rigor				graded assig	nmen	t													

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in laboratory classes	43
Preparation to the practical test	35
Independent study of the subject	20
Participation in an exam / graded assignment / final grading	2
Total student workload (TSW)	100
ECTS credits	4
* Student's workload related to practical forms	100
Student's workload in classes requiring direct participation of academic teachers	43

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	ecific learning outcomes for the subject			Methods for testing of		
Outcome symbol	Outcome description	Form	Teaching method	(checking, assessing) learning outcomes		
		Knowle	edge			
K_W04	Student has advanced knowledge in the field of technical informatics especially programming in C#, necessary to understand at an advanced level the complex dependencies of mechatronic systems and to apply this knowledge in practice through the use of appr	Laboratory work	inquiry methods	Practical test		
K_W06	Student knows and understands basics issues in the field of technical computer science related to programming in C# language, as well as practical applications of this knowledge.					

Subject programme

	K_W10	Student has detailed knowledge related to the application of the following in mechatronics: methodology of structured programming in C# language.			
ı			Skills	s	
	K_U02	Student is able to use their programming knowledge to formulate and solve problems and perform tasks typical for professional activity in the mechatronics industry.		inquiry methods	Practical test
	K_U05	Student has sufficient skills to use the norms and standards appropriate for software design.	Laboratory work		
	K_U15	Student is able to assess the suitability and choose the appropriate methods and tools to solve a simple programming task in the field of Mechatronics.			

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Practical test	bdb (5)	5*50%	2,5
Final result			5

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

- 1. Visual Studio;
- 2. Anatomy of a Simple Program;
- 3. Compilation and Debugging;
- 4. Creating Projects and Solutions;
- 5. Basic keywords;
- 6. Types of variables;
- 7. Arithmetical operations on variables;
- 8. Statements and Expressions;
- 9. Arrays (1-D, and 2-D);
- 10. Lists;
- 11. Structs;
- 12. Functions;
- 13. Files and streaming
- 11. Required teaching aids

Laboratory classes - specialist laboratory

- 12. Literature:
 - a. Basic literature:

Microsoft Visual C#. Step by step., Sharp John, Redmond, 2015

a. Supplementary literature: Beginning C# 2008, Christian Gross, New York, 2007

Subject programme

b. Internet sources:

https://docs.microsoft.com/

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Laboratory classes	Uniszkiewicz Cezary, mgr