Subject programme

- 1. Subject name / subject module: Robotics
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: **Repka Michal, dr inż.**
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

Teaching activities with the tutor																					
Mode of study		Form of classes															Total				
		sow	ECTS	Laboratory work	SOW	ECTS		sow	ECTS		SOW	ECTS		sow	ECTS		SOW	ECTS	 SOW	ECTS	ECTS
Full-time studies				43	57	4															
Part-time studies						4															4
Credit rigor				Graded	assignr	ment															

6. Student workload – ECTS credits balance:

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student work- load (full-time stud- ies/part-time studies)
Participation in lectures	-
Participation in laboratory classes	43
Preparation to laboratory classes	30
Independent study of the subject	25
Participation in an exam / graded assignment	2
Total student workload (TSW)	100
ECTS credits	4
* Student's workload related to trainings	100
Student's workload in classes requiring direct participation of academic teachers	43

- 7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:
 - Recommended admission requirements none.
 - Recommended duration of the subject is taken from the course plan.
- 8. Specific learning outcomes knowledge, skills and social competence:

Outcome symbol	Specific learning outcomes for the subject Outcome description	Form	Teaching method	Methods for testing of (checking, assessing) learning outcomes			
	Knowledge						
K_W08	Student knows and understands selected specific issues in the field of robotics related to: designing control systems, robotics and practical applications of this knowledge.	Laboratory work	Inquiry methods	Student learning activities			
Skills							
K_U02	Student is able to use their knowledge - solve problems and perform tasks typical for robotics.	Laboratory work	Inquiry methods	Student learning activities			

Subject programme

9. Assessment rules / criteria for each form of education and individual grades:

0% - 50%	ndst	80% - 86%	db
51% - 70%	dst	87% - 93%	db+
71% - 79%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Lab reports	dst, db, bdb, db (3,4,5,4)	arithmetic mean (3,5,4,4)* 90%	3,6
Attendance	on 70% of all classes	70% * 5 -> 3,5 * 10%	0,35
Final result			3,95
Grade		3,95/5 = 79%	db (4.0)

10. The learning contents with the form of the class activities on which they are carried out:

(Laboratory work)

1. Introduction to Matlab environment;

- 2. Introduction to Arduino;
- 3. Robot movement open-loop controller; Cause the robot to drive in a straight line, a circle, a rectangle;
- 4. Line following task; Reading values from line sensors on the under-side of the robot; Sensor calibration;

5. Robot movement - closed-loop system; Use encoders encoder attached to the motor shafts to improve robot behavior;

6. Distance sensors; Reading values from bump sensors and the distance sensors(optical, ultrasonic);

7. Obstacle avoidance; Write code to drive robot while avoiding crashing into the objects in front; Write code to drive along the wall;

8. Mapping; Maze exploration - write code to explore a maze and find the center; Find shortest path in a maze;

9. Inertial navigation; Use acceleration sensor to calculate robot speed and position;

10. Advanced navigation(GPS);

11. Kalman filtering; Write a code to implement Kalman filter to improve motion parameters estimation.

11. Required teaching aids:

- a. Lecture multimedia projector
- b. Laboratory classes specialist laboratory

12. Literature:

- a. Basic literature:
 - Corke P.; Robotics, Vision and Control; ISBN 978-3-319-54413-7; Springer 2017
 - Siciliano B., Khatib O.; Springer Handbook of Robotics; ISBN 978-3-319-32552-1; Springer 2016
- b. Supplementary literature:
 - Huimin Lu, Xing Xu, Artificial Intelligence and Robotics, Springer, Cham, 2018

Subject programme

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	Repka Michal, dr inż.
3. Training	