Subject programme

- 1. Subject name / subject module: Mathematics
- 2. Lecture language: English
 - 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Gireń Bolesław, prof. dr hab. inz
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor																			
Mode		Form of classes													Total					
of study	Lecture	SOW	ECTS	Classes	SOW	ECTS		sow	ECTS		SOW	ECTS		SOW	ECTS	 SOW	ECTS	 SOW	ECTS	ECTS
Full-time studies	35	78	л E	26	49	2														7 5
Part-time studies			4,5			3														7,5
Credit rigor		exa	im																	

6. Student workload – ECTS credits balance 1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	35/0
Participation in laboratory classes	26/0
Independent study of the subject	25/0
Individual work on exercises	72/0
Preparation for an exam	28/0
Participation in an exam / graded assignment / final grading	2/0
Total student workload (TSW)	188/0
ECTS credits	7,5
* Student's workload related to practical forms	98/0
Student's workload in classes requiring direct participation of academic teachers	61

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Specific learning outcomes for the subject		Form	Teaching method	Methods for testing of
Outcome	Outcome description			(checking, assessing)
symbol	·····			learning outcomes
		Knowle	edge	
	Student understands the role of mathematics		inquiry methods,	Assessment of activity during exercises,
	as a tool for quantification the relationships		expository methods	Assessment of the implementation of tasks
K W01	and computing. Student knows all	Lecture,		representing individual topics.
K_WOI	elementary functions and its properties.	Classes		
	Student knows the fundamentals of matrix			
	and linear algebra, especially applied to			
		Skill	s	

Subject programme

к_009	Student can solve algebraic equations graphically. Student can perform within the matrix field. Student can solve the systems of linear equations by Cramer or matrix methods. Student can transform and operate with vectors in coordinate	Classes	inquiry methods	Assessment of activity during exercises, Assessment of the implementation of tasks representing individual topics.

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
homeworks - 50 problems	5*(number of solutions x)/50	0,5*5*(x/50)	0,05*x
test - 10 problems	y=sum of the grades for each solution	0,5*(y/10)	0,05*y

 ${f 10.}$ The learning contents with the form of the class activities on which they are carried out

Lecture

- 1. Functions;
- 2. Matrix and Linear Algebra;
- 3. Vectors and Tensors;
- 4. Limits and Derivatives;
- 5. Differentiation Rules;
- 6. Applications of Differentiation;
- 7. Numerical and Functional Infinite Series;
- 8. Differentiation of Multi-Variable Function;
- 9. Integrals;
- 10. Techniques of Integration;
- 11. Applications of Integration;
- 12. Multiple Integrals;
- 13. Ordinary Differential Equations;
- 14. Introduction to Partial Differential Equations;
- 15. Complex Numbers;
- 16. Laplace Transformation and its Applications;
- 17. Fourier Transformation and its Applications;
- 18. Numerical Methods.

Subject programme

11. Required teaching aids

Lecture - multimedia projector

Classes - a room adapted for conducting classes in the form of classes / workshops, multimedia projector

12. Literature:

- a. Basic literature:
 - Filipowicz M., Mathematics theoretical background and exercises, Białystok : WSFiZ, 2005.
- **b.** Supplementary literature:
 - John Berry, Patrick Wainwright, Foundation Mathematics for Engineers, Springer, Macmillan Publishers Limited 1991
 - Jonathan Nimmo, Wilson Stothers, Fundamentals of University Mathematics, 3th ed. Colin McGregor, 2010
 - Audrey Terras, Abstract Algebra with Applications, Published online: 23 May 2019 Cambridge mathematical textbooks
 - John B. Conway, A First Course in Analysis, 2017, Cambridge mathematical textbooks
- c. Internet sources:
 - SERGE LANG, BASIC MATHEMATICS; ADDISON -WESLEY PUBLISHING CO.; https://www.docdroid.net/K1VENuF/basic-mathematics-serge-lang.pdf
 - JAMES STEWART, CALCULUS. EARLY TRANSCENDENTALS; https://theswissbay.ch/pdf/Gentoomen%20Library/Maths/Calculus/Calculus%20-%20J.%20Stewart.pdf
 - STEPHEN BOYD, INTRODUCTION TO APPLIED LINEAR ALGEBRA; CAMBRIDGE UNIVERSITY PRESS; vmlsbook.stanford.edu/vmls.pdf
 - GILBERT STRANG, LINEAR ALGEBRA AND ITS APPLICATIONS; THOMPSON BROOKS/COLE; www.math.hcmus.edu.vn/~bxthang/Linear%20algebra%20and%20its%20applications.pdf
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Lecture	Gireń Bolesław, dr hab. inż.
2. Classes	Gireń Bolesław, dr hab. inż.